Welcome To Website IAS

Hot news
Achievement

Independence Award

- First Rank - Second Rank - Third Rank

Labour Award

- First Rank - Second Rank -Third Rank

National Award

 - Study on food stuff for animal(2005)

 - Study on rice breeding for export and domestic consumption(2005)

VIFOTEC Award

- Hybrid Maize by Single Cross V2002 (2003)

- Tomato Grafting to Manage Ralstonia Disease(2005)

- Cassava variety KM140(2010)

Centres
Website links
Vietnamese calendar
Library
Visitors summary
 Curently online :  5
 Total visitors :  7671215

Testing methods and statistical models of genomic prediction for quantitative disease resistance to Phytophthora sojae in soybean [Glycine max (L.) Merr] germplasm collections

Quantitative disease resistance (QDR) toward Phytophthora sojae in soybean is a complex trait controlled by many small-effect loci throughout the genome. Along with the technical and rate-limiting challenges of phenotyping resistance to a root pathogen, the trait complexity can limit breeding efficiency. However, the application of genomic prediction to traits with complex genetic architecture, such as QDR toward P. sojae, is likely to improve breeding efficiency.

William R. Rolling, Anne E. Dorrance and Leah K. McHale

Theoretical and Applied Genetics December 2020; vol. 133:3441–3454.

Figure: Symtomp of  soybean Phytophthora root and stem rot

Key message

Genomic prediction of quantitative resistance toward Phytophthora sojae indicated that genomic selection may increase breeding efficiency. Statistical model and marker set had minimal effect on genomic prediction with > 1000 markers.

Abstract

Quantitative disease resistance (QDR) toward Phytophthora sojae in soybean is a complex trait controlled by many small-effect loci throughout the genome. Along with the technical and rate-limiting challenges of phenotyping resistance to a root pathogen, the trait complexity can limit breeding efficiency. However, the application of genomic prediction to traits with complex genetic architecture, such as QDR toward P. sojae, is likely to improve breeding efficiency. We provide a novel example of genomic prediction by measuring QDR to P. sojae in two diverse panels of more than 450 plant introductions (PIs) that had previously been genotyped with the SoySNP50K chip. This research was completed in a collection of diverse germplasm and contributes to both an initial assessment of genomic prediction performance and characterization of the soybean germplasm collection. We tested six statistical models used for genomic prediction including Bayesian Ridge Regression; Bayesian LASSO; Bayes A, B, C; and reproducing kernel Hilbert spaces. We also tested how the number and distribution of SNPs included in genomic prediction altered predictive ability by varying the number of markers from less than 50 to more than 34,000 SNPs, including SNPs based on sequential sampling, random sampling, or selections from association analyses. Predictive ability was relatively independent of statistical model and marker distribution, with a diminishing return when more than 1000 SNPs were included in genomic prediction. This work estimated relative efficiency per breeding cycle between 0.57 and 0.83, which may improve the genetic gain for P. sojae QDR in soybean breeding programs.

 

See: https://link.springer.com/article/10.1007/s00122-020-03679-w

Trở lại      In      Số lần xem: 162

[ Tin tức liên quan ]___________________________________________________

 

Designed & Powered by WEBSO CO.,LTD